jtlawrie
Answered

What is the missing expression that would make the left-hand-side of the equation equal to the right-hand-side?

[tex]\frac{???}{x-2}/\frac{x^{2}-1 }{x^{2} -4x+4} =\frac{5(x-2)}{x-1}[/tex]

Answer :

Given:

The equation is

[tex]\dfrac{???}{x-2}/\dfrac{x^2-1}{x^2-4x+4}=\dfrac{5(x-2)}{x-1}[/tex]

To find:

The missing value.

Solution:

Let the missing value be k.

[tex]\dfrac{k}{x-2}/\dfrac{x^2-1}{x^2-4x+4}=\dfrac{5(x-2)}{x-1}[/tex]

[tex]\dfrac{k}{x-2}\times \dfrac{x^2-2(x)(2)+2^2}{x^2-1^2}=\dfrac{5(x-2)}{x-1}[/tex]

Using the formulae [tex](a-b)^2=a^2-2ab+b^2[/tex] and [tex](a-b)(a+b)=a^2-b^2[/tex].

[tex]\dfrac{k}{x-2}\times \dfrac{(x-2)^2}{(x-1)(x+1)}=\dfrac{5(x-2)}{x-1}[/tex]

[tex]\dfrac{k(x-2)}{(x-1)(x+1)}=\dfrac{5(x-2)}{x-1}[/tex]

Cancel out the common factors from both sides.

[tex]\dfrac{k}{x+1}=5[/tex]

Multiply both sides by (x+1).

[tex]k=5(x+1)[/tex]

Therefore, the missing value is 5(x+1).

Other Questions