Answer :

xKelvin

Answer:

[tex]x=\pm3\text{ or }x=\pm2[/tex]

Step-by-step explanation:

We have the equation:

[tex]x^4-13x^2+36=0[/tex]

Notice that this resembles a quadratic. So, we can use u-substitution to solve for the values of x.

Let [tex]u=x^2[/tex]. Then:

[tex](x^2)^2-13(x^2)+36=0[/tex]

Perform the substitution:

[tex]u^2-13u+36=0[/tex]

We can now factor using -9 and -4:

[tex](u-9)(u-4)=0[/tex]

Zero Product Property:

[tex]u-9=0\text{ or } u-4=0[/tex]

Solve for each case:

[tex]u=9\text{ or } u=4[/tex]

Substitute back u:

[tex]x^2=9\text{ or } x^2=4[/tex]

Take the square root of both sides for both equations. Since we’re taking an even root, we will need plus/minus. Therefore, our possible values of x are:

[tex]x=\pm3\text{ or }x=\pm2[/tex]

Other Questions