Answered

A box is formed by cutting squares from the four corners of a sheet of paper and folding up the sides.
Suppose the paper is 7"-wide by 9"-long.
a. Estimate the maximum volume for this box?
b. What cutout length produces the maximum volume?

Answer :

Answer:

B

Step-by-step explanation:

To answer this question it is necessary to find the volume of the box as a function of "x", and apply the concepts of a maximum of a function.

The solution is:

a) V (max) = 36.6 in³

b) x = 1.3 in

The volume of a cube is:

V(c) = w×L×h  ( in³)

In this case, cutting the length  "x" from each side, means:

wide of the box    ( w - 2×x )   equal to  ( 7 - 2×x )

Length of the box ( L - 2×x )   equal to  ( 9 - 2×x )

The height  is  x

Then the volume of the box,  as a function of x is:

V(x) = ( 7 - 2×x ) × ( 9 -2×x ) × x

V(x) = ( 63 - 14×x - 18×x + 4×x²)×x

V(x) = 4×x³ - 32×x² + 63×x

Tacking derivatives,  on both sides of the equation

V´(x) = 12×x² - 64 ×x + 63

If   V´(x) = 0      then      12×x² - 64 ×x + 63 = 0

This expression is a second-degree equation, solving for x

x₁,₂ = [ 64 ± √ (64)² - 4×12*63

x₁ =  ( 64 + 32.74 )/ 24

x₁ = 4.03     this value  will bring us an unfeasible solution,  since it is not possible to cut 2×4 in from a piece of paper of 7 in ( therefore we dismiss that value)

x₂ = ( 64 - 32.74)/24

x₂ = 1.30 in

The  maximum volume of the box is:

V(max) = ( 7 - 2.60) × ( 9 - 2.60)×1.3

V(max) = 4.4 × 6.4 × 1.3

V(max) = 36.60 in³

To chek for maximum value of V when x = 1.3

we find the second derivative of V  V´´,  and substitute the value of x = 1.3,    if the relation is smaller than 0,  we have a maximum value of V

V´´(x) = 24×x - 64 for x = 1.3

V´´(x) = 24× 1.3 - 64            ⇒   V´´(x) < 0

Then the value  x = 1.3 will bring maximum value for V

Related Link: https://brainly.com/question/13581879

Other Questions