Answer :

Answer:

[tex]\boxed {d = 4}[/tex]

Step-by-step explanation:

Solve for the value of [tex]d[/tex]:

[tex]-24 + 12d = 2(d - 3) + 22[/tex]

-Use Distributive Property:

[tex]-24 + 12d = 2(d - 3) + 22[/tex]

[tex]-24 + 12d = 2d - 6 + 22[/tex]

-Combine like terms:

[tex]-24 + 12d = 2d - 6 + 22[/tex]

[tex]-24 + 12d = 2d +16[/tex]

-Take [tex]2d[/tex] and subtract it from [tex]12d[/tex]:

[tex]-24 + 12d - 2d = 2d - 2d +16[/tex]

[tex]-24 + 10d = 16[/tex]

-Add both sides by [tex]24[/tex]:

[tex]-24 + 24 + 10d = 16 + 24[/tex]

[tex]10d = 40[/tex]

-Divide both sides by [tex]10[/tex]:

[tex]\frac{10d}{10} = \frac{40}{10}[/tex]

[tex]\boxed {d = 4}[/tex]

Therefore, the value of [tex]d[/tex] is [tex]4[/tex].

Answer:

d = 4

Step-by-step explanation:

Given

- 24 + 12d = 2(d - 3) + 22 ← distribute and simplify right side

- 24 + 12d = 2d - 6 + 22

- 24 + 12d = 2d + 16 ( subtract 2d from both sides )

- 24 + 10d = 16 ( add 24 to both sides )

10d = 40 ( divide both sides by 10 )

d = 4