Answer :
Answer:
[tex]\boxed {d = 4}[/tex]
Step-by-step explanation:
Solve for the value of [tex]d[/tex]:
[tex]-24 + 12d = 2(d - 3) + 22[/tex]
-Use Distributive Property:
[tex]-24 + 12d = 2(d - 3) + 22[/tex]
[tex]-24 + 12d = 2d - 6 + 22[/tex]
-Combine like terms:
[tex]-24 + 12d = 2d - 6 + 22[/tex]
[tex]-24 + 12d = 2d +16[/tex]
-Take [tex]2d[/tex] and subtract it from [tex]12d[/tex]:
[tex]-24 + 12d - 2d = 2d - 2d +16[/tex]
[tex]-24 + 10d = 16[/tex]
-Add both sides by [tex]24[/tex]:
[tex]-24 + 24 + 10d = 16 + 24[/tex]
[tex]10d = 40[/tex]
-Divide both sides by [tex]10[/tex]:
[tex]\frac{10d}{10} = \frac{40}{10}[/tex]
[tex]\boxed {d = 4}[/tex]
Therefore, the value of [tex]d[/tex] is [tex]4[/tex].
Answer:
d = 4
Step-by-step explanation:
Given
- 24 + 12d = 2(d - 3) + 22 ← distribute and simplify right side
- 24 + 12d = 2d - 6 + 22
- 24 + 12d = 2d + 16 ( subtract 2d from both sides )
- 24 + 10d = 16 ( add 24 to both sides )
10d = 40 ( divide both sides by 10 )
d = 4