WILL GIVE BRAINLYNESS
Suppose a publishing company estimates that its monthly cost is
C(x) = 600x2 + 300x and its monthly revenue is
R(x) = -0.4x3 + 700x2 – 600x + 500, where x is in thousands of
books sold. The profit is the difference between the revenue and the cost.
What is the profit function, P(x)?

Answer :

azkaa

Answer:

P(x) = -0.4[tex]x^{3}[/tex] + 100[tex]x^{2}[/tex] - 300[tex]x[/tex] + 500

Step-by-step explanation:

C(x) = 600[tex]x^{2}[/tex] + 300[tex]x[/tex]

R(x) = -0.4[tex]x^{3}[/tex] + 700[tex]x^{2}[/tex] - 600[tex]x[/tex] + 500

P(x) = R(x) - C(x)

(-0.4[tex]x^{3}[/tex] + 700[tex]x^{2}[/tex] - 600[tex]x[/tex] + 500) - (600[tex]x^{2}[/tex] + 300[tex]x[/tex])

= -0.4[tex]x^{3}[/tex] + 100[tex]x^{2}[/tex] - 300[tex]x[/tex] + 500

This should be the answer.

Answer:

p(x)= -0.4x³+100x²-900x+500

Other Questions