bug122906
Answered

Consider f(x)=2|x|
What is the rate of change over the interval 0≤x≤4?

How is the rate of change over this interval related to the form of the function?

Answer :

absor201

Answer:

Please check the explanation.

Step-by-step explanation:

As we know that the average rate of change of f(x) in the closed

interval [a, b] is

[tex]\frac{f\left(b\right)-f\left(a\right)}{b-a}[/tex]

Given the interval [a, b] = [0, 4]

as

[tex]f(x)=2|x|[/tex]

[tex]f(b)=f(2)=2\cdot \:4[/tex]       ∵  [tex]\mathrm{Apply\:absolute\:rule}:\quad \left|a\right|=a,\:a\ge 0[/tex]

      [tex]= 8[/tex]

   

[tex]f(x)=2|x|[/tex]

[tex]f(a)=f(0)=2\cdot \:0[/tex]       ∵  [tex]\mathrm{Apply\:absolute\:rule}:\quad \left|a\right|=a,\:a\ge 0[/tex]

       [tex]= 0[/tex]

so the average rate of change  :

[tex]\frac{f\left(b\right)-f\left(a\right)}{b-a}=\frac{8-0}{4-0}[/tex]

              [tex]=\frac{8}{4}[/tex]

               [tex]= 2[/tex]

We know that a rate of change basically indicates how an output quantity changes relative to the change in the input quantity. Here, it is clear the value of y increase with the increase of input.

Other Questions