A certain semiconductor device requires a tunneling probability of T = 10-5 for an electron tunneling through a rectangular barrier with a barrier height of Vo = 0.4 eV, the electron energy is 0.04 eV Determine the maximum barrier width.

Answer :

Answer:

Generally the barrier width is [tex]a = 1.9322 *10^{-9} \ m[/tex]

Step-by-step explanation:

From the question we are told that

     The tunneling probability required is  [tex]T = 1 * 10^{-5}[/tex]

      The barrier height is  [tex]V_o = 0.4 eV[/tex]

       The electron energy is  [tex]E = 0.08eV[/tex]

Generally the wave number is mathematically represented as

      [tex]k = \sqrt{ \frac{2 * m [V_o - E]}{\= h^2} }[/tex]

Here m is the mass of the electron with the value  [tex]m = 9.11 *10^{-31} \ kg[/tex]

         h  is is know as h-bar and the value is  [tex]\= h = 1.054*10^{-34} \ J \cdot s[/tex]

So

          [tex]k = \sqrt{ \frac{2 * 9.11 *10^{-31 } [0.4 - 0.04] * 1.6*10^{-19}}{[1.054*10^{-34}^2]} }[/tex]

=>      [tex]k = 3.073582 *10^{9} \ m^{-1}[/tex]

Generally the tunneling probability is mathematically represented as

          [tex]T = 16 * \frac{E}{V_o } * [1 - \frac{E}{V_o} ] * e^{-2 * k * a}[/tex]

So

        [tex]1.0 *10^{-5} = 16 * \frac{0.04}{0.4 } * [1 - \frac{0.04}{0.4} ] * e^{-2 * 3.0736 *10^{9} * a}[/tex]

=>    [tex]6.944*10^{-6}= e^{-2 * 3.0736 *10^{9} * a}[/tex]

Taking natural log of both sides

          [tex]ln[6.944*10^{-6}] = -2 * 3.0736 *10^{9} * a}[/tex]

=>        [tex]-11.8776 = -2 * 3.0736 *10^{9} * a}[/tex]

=>        [tex]a = 1.9322 *10^{-9} \ m[/tex]

       

Other Questions