Answer :

Given:

A linear function f with f(0)=2 and f(2)=4.

To find:

The linear function.

Solution:

If [tex]f(x)=y[/tex], then function passes through the point (x,y).

A linear function f with f(0)=2 and f(2)=4. It means, the function passes through (0,2) and (2,4). So, the equation of linear function is

[tex]y-y_1=\dfrac{y_2-y_1}{x_2-x_1}(x-x_1)[/tex]

[tex]y-2=\dfrac{4-2}{2-0}(x-0)[/tex]

[tex]y-2=\dfrac{2}{2}(x)[/tex]

[tex]y-2=x[/tex]

Adding 2 on both sides, we get

[tex]y=x+2[/tex]

The function form of the equation is

[tex]f(x)=x+2[/tex]

Therefore, the required linear function is [tex]f(x)=x+2[/tex].

The linear function f with f(0)=2 and f(2)=4 is:

f(x)  =  x  +  2

The given points are:

f(0)  =  2  and  f(2)  =  4

That is,  x₁  =  0,  y₁  =  2,  x₂ = 2,  y₂  =  4

The slope of the linear function is calculated as shown below

[tex]m = \frac{y_2-y_1}{x_2-x_1} \\\\m = \frac{4-2}{2-0} \\\\m = \frac{2}{2} \\\\m = 1[/tex]

The point-slope form of a linear equation is given as:

[tex]y - y_1 = m(x - x_1)[/tex]

Substitute x₁  =  0,  y₁  =  2 and m = 1 into the point-slope equation above

[tex]y - 2 = 1(x - 0)\\\\y-2 = x\\\\y = x + 2[/tex]

The linear function is:

f(x)  =  x  +  2

Learn more here: https://brainly.com/question/17003809

Other Questions