Answer :

elcharly64

Answer:

[tex]\displaystyle L=4x^{4}y^{8}z^{12}[/tex]

Step-by-step explanation:

The Volume of Rectangular Prism

Given a rectangular prism of width W, height H, and length L, its volume is calculated as follows:

V = WHL

We are given the volume of a rectangular prism:

[tex]V=72x^8y^{14}z^{22}[/tex]

It's also known the width is:

[tex]W=6x^3y[/tex]

And height

[tex]H=3xy^5z^{10}[/tex]

Substituting in the formula, we solve for L:

[tex]72x^8y^{14}z^{22}=(6x^3y)*(3xy^5z^{10})L[/tex]

[tex]\displaystyle L=\frac{72x^8y^{14}z^{22}}{(6x^3y)*(3xy^5z^{10})}[/tex]

Operating the denominator

[tex]\displaystyle L=\frac{78x^8y^{14}z^{22}}{18x^4y^6z^{10}}[/tex]

Dividing:

[tex]\displaystyle L=4x^{8-4}y^{14-6}z^{22-10}[/tex]

Simplifying:

[tex]\boxed{\displaystyle L=4x^{4}y^{8}z^{12}}[/tex]

Other Questions