Answered

4 OT 5
A 35g chunk of metal at 130C was dropped in a bucket containing 220g of water at 25C. The final temperature of the mixture
was 300. What is the specific heat capacity of the metal?
(Specific heat for water: 4184 J/g C) Formula (m)(c)(T) = (m) (c)(T)

Answer :

Answer: The specific heat capacity of metal is [tex]1.31J/g^0C[/tex]

Explanation:

[tex]Q_{absorbed}=Q_{released}[/tex]

As we know that,  

[tex]Q=m\times c\times \Delta T=m\times c\times (T_{final}-T_{initial})[/tex]

[tex]m_1\times c\times (T_{final}-T_1)=-[m_2\times c\times (T_{final}-T_2)][/tex]      

where,

[tex]m_1[/tex] = mass of metal = 35 g

[tex]m_2[/tex] = mass of water = 220 g

[tex]T_{final}[/tex] = final temperature = [tex]30^0C[/tex]

[tex]T_1[/tex] = temperature of metal = [tex]130^oC[/tex]

[tex]T_2[/tex] = temperature of water = [tex]25^oC[/tex]

[tex]c_1[/tex] = specific heat of metal = ?

[tex]c_2[/tex] = specific heat of water =  [tex]4.184J/g^0C[/tex]

Now put all the given values in equation (1), we get

[tex]m_1\times c_1\times (T_{final}-T_1)=-[m_2\times c_2\times (T_{final}-T_2)][/tex]

[tex]35\times c_1\times (30-130)^0C=-[220g\times 4.184\times (30-25)][/tex]

[tex]c_1=1.31J/g^0C[/tex]

Therefore, the specific heat capacity of metal is [tex]1.31J/g^0C[/tex]

Other Questions