Answer :
Answer:
a) [tex]\vec{F_{c}}=mR\omega^{2}[/tex]
[tex]\vec{F_{c}}=9.53 \: N \vec{r}[/tex]
b) [tex]|\vec{F_{c}}|=9.53 \: N [/tex]
Step-by-step explanation:
a) The centripetal force equation is:
[tex]\vec{F_{c}}=m\vec{a_{c}}[/tex]
[tex]\vec{F_{c}}=mR\omega^{2}[/tex]
Now, we know that the body makes one revolution every 5 seconds, so we can find the angular velocity:
[tex]\omega=\frac{1 rev}{5 s}=0.2\: \frac{rev}{s}=1.26\: \frac{rad}{s}[/tex]
[tex]\vec{F_{c}}=2*3*1.26^{2}=9.53 \: N \vec{r}[/tex]
The centripetal force is a vector in the radius direction.
b) The magnitude of that force will be:
[tex]|\vec{F_{c}}|=9.53 \: N [/tex]