Using the binomial theorem expression to expand (4a+7b)^8, what would you substitute for the values of a and b?


A. a=11 and b=8


B. a=4a and b=7b


C.a=4 and b=7


D. a=8 and b=7

Answer :

xero099

Answer:

B. [tex]a = 4\cdot a[/tex] and [tex]b = 7\cdot b[/tex].

Step-by-step explanation:

The Binomial Theorem states that a binomial of the form [tex](a+b)^{n}[/tex], [tex]a, b\in \mathbb{R}[/tex] can be expanded in the following form:

[tex](a+b)^{n} = \Sigma \limits_{i=0}^{n} \frac{n!}{k!\cdot (n-k)!} \cdot a^{n-i}\cdot b^{i}[/tex] (1)

If we have [tex](4\cdot a + 7\cdot b)^{8}[/tex], then [tex]a = 4\cdot a[/tex] and [tex]b = 7\cdot b[/tex]. In a nutshell, correct answer is B.

realdaneel

B
That is the correct answer, hope it helps my dudes!

Other Questions