Answered

Write the equation of the line that is perpendicular to y = -2/3 x +2 and goes through the point (-1, 4). Make sure your final answer is in slope-intercept form

Answer :

Given:

The equation of a line is

[tex]y=-\dfrac{2}{3}x+2[/tex]          ...(i)

The perpendicular line passes through the point (-1,4).

To find:

The equation of the perpendicular line.

Solution:

The slope intercept form of a line is:

[tex]y=mx+b[/tex]            ...(ii)

Where, m is the slope and b is the y-intercept.

On comparing (i) and (ii), we get

[tex]m=-\dfrac{2}{3}[/tex]

Product of slopes of two perpendicular lines is -1.

Let the slope of perpendicular line is [tex]m_1[/tex].

[tex]m\times m_1=-1[/tex]

[tex]-\dfrac{2}{3}\times m_1=-1[/tex]

[tex]m_1=\dfrac{3}{2}[/tex]

The slope of the perpendicular line is [tex]m_1=\dfrac{3}{2}[/tex] and it passes through the point (-1,4). So, the equation of the line is:

[tex]y-y_1=m_1(x-x_1)[/tex]

[tex]y-4=\dfrac{3}{2}(x-(-1))[/tex]

[tex]y-4=\dfrac{3}{2}(x+1)[/tex]

[tex]y-4=\dfrac{3}{2}x+\dfrac{3}{2}[/tex]

Add 4 on both sides.

[tex]y-4+4=\dfrac{3}{2}x+\dfrac{3}{2}+4[/tex]

[tex]y=\dfrac{3}{2}x+\dfrac{3+8}{2}[/tex]

[tex]y=\dfrac{3}{2}x+\dfrac{11}{2}[/tex]

Therefore, the equation of required line is [tex]y=\dfrac{3}{2}x+\dfrac{11}{2}[/tex].

Other Questions