Answer :
Given:
The equation of a line is
[tex]y=-\dfrac{2}{3}x+2[/tex] ...(i)
The perpendicular line passes through the point (-1,4).
To find:
The equation of the perpendicular line.
Solution:
The slope intercept form of a line is:
[tex]y=mx+b[/tex] ...(ii)
Where, m is the slope and b is the y-intercept.
On comparing (i) and (ii), we get
[tex]m=-\dfrac{2}{3}[/tex]
Product of slopes of two perpendicular lines is -1.
Let the slope of perpendicular line is [tex]m_1[/tex].
[tex]m\times m_1=-1[/tex]
[tex]-\dfrac{2}{3}\times m_1=-1[/tex]
[tex]m_1=\dfrac{3}{2}[/tex]
The slope of the perpendicular line is [tex]m_1=\dfrac{3}{2}[/tex] and it passes through the point (-1,4). So, the equation of the line is:
[tex]y-y_1=m_1(x-x_1)[/tex]
[tex]y-4=\dfrac{3}{2}(x-(-1))[/tex]
[tex]y-4=\dfrac{3}{2}(x+1)[/tex]
[tex]y-4=\dfrac{3}{2}x+\dfrac{3}{2}[/tex]
Add 4 on both sides.
[tex]y-4+4=\dfrac{3}{2}x+\dfrac{3}{2}+4[/tex]
[tex]y=\dfrac{3}{2}x+\dfrac{3+8}{2}[/tex]
[tex]y=\dfrac{3}{2}x+\dfrac{11}{2}[/tex]
Therefore, the equation of required line is [tex]y=\dfrac{3}{2}x+\dfrac{11}{2}[/tex].