Answer :

Answer:

[tex]x = 7[/tex]

Step-by-step explanation:

1) Use Division Distributive Property: (x/y)^a = x^a/y^a.

[tex] \frac{1}{ {27}^{x - 8} } = 27[/tex]

2) Multiply both sides by 27^x - 8.

[tex]1 = {27} \times 27^{1 + x - 8} [/tex]

3) Use the product rule: x^a x^b = x^a+b.

[tex]1 = {27}^{1 + x - 8} [/tex]

4) Simplify 1 + x - 8 to x - 7.

[tex]1 = {27}^{x - 7} [/tex]

5) Use Definition of Common Logarithm: b^a = x if and only if logb (x) = a.

[tex] log_{27}1 = x - 7 [/tex]

6) Use Change of Base Rule.

[tex] \frac{ log_1 }{ log{27} } = x - 7[/tex]

7) Use rule of 1: log 1 = 0.

[tex] \frac{0}{ log_{27}} = x - 7[/tex]

8) Simplify 0/log_27 to 0.

[tex]0 = x - 7[/tex]

9) Add 7 to both sides.

[tex]7 = x[/tex]

10) Switch sides.

[tex]x = 7[/tex]

Therefor, the answer is x = 7.

Other Questions