Answered

Suppose m is the line with equation y = −4 and ΔA'B'C is mapped to ΔA"B"C" by applying the glide reflection T⟨3, 0⟩ ∘ Rm. What are the coordinates of ΔA″B″C″?

Answer :

MrRoyal

Answer:

[tex]A" = (-1,-3)[/tex]     [tex]B" = (-2,-6)[/tex]      [tex]C" = (1,-7)[/tex]

Step-by-step explanation:

Given

See attachment for graph

[tex]A' = (-4, -5)[/tex]

[tex]B'=(-5, -2)[/tex]

[tex]C' = (-2, -1)[/tex]

First, reflect over [tex]y =-4[/tex]

The rule is: [tex](x,y) ==> (x,y+h)[/tex]

Where [tex]h =-4[/tex]

So:

[tex]A' = (-4, -5)[/tex] [tex]==>[/tex] [tex]A'' = (-4, 1-4) = (-4, -3)\\[/tex]

[tex]B'=(-5, -2)[/tex] [tex]==>[/tex] [tex]B'' = (-5, -2-4) = (-5, -6)[/tex]

[tex]C' = (-2, -1)[/tex] [tex]==>[/tex] [tex]C'' = (-2, -3-4) = (-2, -7)[/tex]

So, we have:

[tex]A" = (-4,-3)[/tex]      [tex]B" = (-5,-6)[/tex]       [tex]C" = (-2,-7)[/tex]

Next translate A''B''C'' by T(3, 0), we have;

The rule is: [tex](x,y)==>(x+3,y+0)[/tex]

[tex]A" = (-4,-3)[/tex] [tex]==>[/tex] [tex]A" = (-4 + 3, -3+0) = (-1, -3)[/tex]

[tex]B" = (-5,-6)[/tex]  [tex]==>[/tex] [tex]B" = (-5 + 3, -6) = (-2, -6)[/tex]

[tex]C" = (-2,-7)[/tex] [tex]==>[/tex]  [tex]C" = (-2 + 3, -7) = (1 , -7)[/tex]

Hence, A''B''C'' are:

[tex]A" = (-1,-3)[/tex]     [tex]B" = (-2,-6)[/tex]      [tex]C" = (1,-7)[/tex]

${teks-lihat-gambar} MrRoyal

Other Questions