A normal distribution has a mean of 85.3 and a standard deviation of 4.85. Find the data value corresponding to the value of z given. (Enter your answer to four decimal places.) z = 0.55

Answer :

JeanaShupp

Answer: 87.9675

Step-by-step explanation:

Formula for z:

[tex]z=\dfrac{x-\mu}{\sigma}[/tex], where x= data value corresponding to z, [tex]\mu[/tex] = mean, [tex]\sigma[/tex] = standrad deviation.

Given: [tex]\mu[/tex] =85.3, [tex]\sigma[/tex] =4.85, z=0.55

To find : x

[tex]0.55=\dfrac{x-85.3}{4.85}\\\\\Rightarrow\ 0.55\times4.85=x-85.3\\\\\Rightarrow\ 2.6675=x-85.3\\\\\Rightarrow\ x=85.3+2.6675\\\\\Rightarrow\ x=87.9675[/tex]

Hence, The required data value= 87.9675

Other Questions