Answer :
Answer:
a) CI = ( - 0,0352 ; 0,1472 )
b) The CI include 0 since that means we don´t have sufficient evidence at α = 1 % to support differences between the two proportions
Step-by-step explanation:
From sample 1. ( assigned to surgery)
sample size n = 367
sample proportion p₁ = 245/367 p₁ = 66,8 % or p₁ = 0,668
Then q₁ = 1 - 0,668 q₁ = 0,332
From sample 2. ( assigned to observation )
sample size n₂ = 364
sample proportion p₂ = 223/364 p₂ = 61,2 % or p₂ = 0,612
Then q₂ = 1 - 0,612 q₁ = 0,388
Test Hypothesis is:
Null hypothesis H₀ p₂ = p₁
Alternative Hypothesis Hₐ p₂ ≠ p₁
a) CI ( 99 %) if CI = 99% significance level α = 1 % α = 0,01
α/2 = 0,005 n z-table we look z (c) for 0,005
z(c) = 2,578
CI = ( p₁ - p₂ ) ± z(α/2) √(p₁*q₁) / n₁] + [ p₂*q₂/n₂
CI =(0,668 -0,612 ) ± 2,578 * √(0,668*0,332) /367 + (0,612*0,388)/364
CI = 0,056 ± 2,578*√6,04 *10⁻⁴ + 6,52 *10⁻⁴
CI = 0,056 ± 2,578*3,54*10⁻²
CI = ( 0,056 - 0,0912 ; 0,056 + 0,0912 )
CI = ( - 0,0352 ; 0,1472 )
b) The CI include 0 since that means we don´t have sufficient evidence at α = 1 % to support differences between the two proportions