Answer :

xenia168

Answer:

[tex]L_{1}[/tex] ⊥ [tex]L_{2}[/tex] ; [tex]L_{3}[/tex] ⊥ [tex]L_{2}[/tex] ; [tex]L_{1}[/tex] ║ [tex]L_{3}[/tex]

Step-by-step explanation:

( [tex]x_{1}[/tex] , [tex]y_{1}[/tex] )

( [tex]x_{2}[/tex] , [tex]y_{2}[/tex] )

m = [tex]\frac{y_{2} -y_{1} }{x_{2} -x_{1} }[/tex]

y = mx + b

"m" is slope

"b" is y-intercept (coordinates are (0, b)

Parallel lines have the same slopes and different y-intercepts.

Slopes of perpendicular lines are opposite reciprocals: [tex]m_{1}[/tex] × [tex]m_{2}[/tex] = - 1

~~~~~~~~~~~~~~~~~~~~~~

[tex]L_{1}[/tex] :  y = x + 5 , [tex]m_{L_{1} }[/tex] = 1 , b = 5

[tex]L_{2}[/tex] : y = - x + 7 , [tex]m_{L_{2} }[/tex] = - 1 , b = 7

[tex]L_{1}[/tex] ⊥ [tex]L_{2}[/tex]

[tex]L_{3}[/tex] : [tex]m_{L_{3} }[/tex] = 1 , b = - 2

[tex]L_{1}[/tex] ║ [tex]L_{3}[/tex] and [tex]L_{2}[/tex] ⊥ [tex]L_{3}[/tex]  

${teks-lihat-gambar} xenia168

Other Questions