Answered

The line plots below show the numbers of hours for the 12 students in each class.
The distance between the means of Class A and Class B is 4 hours.
Find the mean absolute deviation (MAD) for each class.

The line plots below show the numbers of hours for the 12 students in each class. The distance between the means of Class A and Class B is 4 hours. Find the mea class=

Answer :

Answer:

for class A

mean ={3+4+8(5)+6+7)/12}=5hours

mean absolute deviation (MAD) for A

=[|5-3|+|5-4|+8|5-5|+|5-6|+|5-7|]/12=6/12=1/2

for class B

mean =4 hours given

mean absolute deviation (MAD) for B

=[|4-7|+|4-8|+8|4-9|+|4-10|+|4-11|]/12=60/12=5

Nayefx

Answer:

See below

Step-by-step explanation:

class-1:

we are given some data 3,4,5,5,5,5,5,5,5,5,6,7

we want to figure out the MAD (Mean absolute deviation) of the given database

remember that,

[tex] \rm\displaystyle \: MAD = \frac{1}{n} \sum_{i = 1} ^{n} |x_{i} - m(x)| [/tex]

where m(X) represents the mean of the given database and [tex]|x_{i}-m(X)|[/tex] tells us to subtract every data with the got mean and n represents the number of data

let figure out m(X)

[tex] \rm\displaystyle \: m(x) = \frac{3 + 4 + 5(8) + 6 + 7 }{12} [/tex]

simplify multiplication:

[tex] \rm\displaystyle \: m(x) = \frac{3 + 4 + 40 + 6 + 7 }{12} [/tex]

simplify addition:

[tex] \rm\displaystyle \: m(x) = \frac{60}{12} [/tex]

simplify substraction:

[tex] \rm\displaystyle \: m(x) = 5[/tex]

let's figure out [tex]\sum[/tex] and [tex]|x_i-m(X)|[/tex]

[tex] \displaystyle\begin{array} {|c |c| } \hline |x_{i} - m(x) | & \displaystyle\sum_{i = 1} ^{n} |x_{i} - m(x) | \\ \hline |3 - 5 | & 2 \\ \hline | 4 - 5 | &1 \\ \hline |5(8) - 5(8)| &0 \\ \hline |6 - 5|&1 \\ \hline |7 - 5| &2 \\ \hline \\ \text{total} & 5 \\ \hline\end{array}[/tex]

last part let's figure out MAD

[tex] \displaystyle \: MAD = \frac{5}{12} [/tex]

simplify division:

[tex] \displaystyle \: MAD = 0.42[/tex]

Class-2:

likewise class-2

given database 7,8,9,9,9,9,9,9,9,9,10,11

figure out m(X)

[tex] \rm\displaystyle \: m(x )= \frac{7 + 8 + 9(8) + 10 + 11}{12} [/tex]

simplify multiplication:

[tex] \rm\displaystyle \: m(x )= \frac{7 + 8 + 72 + 10 + 11}{12} [/tex]

simplify addition:

[tex] \rm\displaystyle \: m(x )= \frac{108}{12} [/tex]

simplify division:

[tex] \rm\displaystyle \: m(x )= 9[/tex]

likewise

figure out [tex]\sum[/tex] and [tex]|x_i-m(X)|[/tex]

[tex] \displaystyle\begin{array} {|c |c| } \hline |x_{i} - m(x) | & \displaystyle\sum_{i = 1} ^{n} |x_{i} - m(x) | \\ \hline |7 - 9 | & 2 \\ \hline | 8- 9 | &1 \\ \hline |9(8) - 9(8)| &0 \\ \hline |10 - 9|&1 \\ \hline |11- 9| &2 \\ \hline \\ \text{total} & 5 \\ \hline\end{array}[/tex]

figure out MAD

[tex] \displaystyle \: MAD = \frac{5}{12} [/tex]

simplify division:

[tex] \displaystyle \: MAD = 0.42[/tex]

Other Questions