Answer :
Answer:
A. A reflection over the x-axis and a vertical stretch.
Step-by-step explanation:
Let [tex]h(x) = x^{2}[/tex], to obtain [tex]k(x) = -4\cdot x^{2}[/tex], we need to use the following two operations:
(i) Vertical stretch
[tex]g(x) = k\cdot f(x)[/tex], [tex]k\in \mathbb{R}^{+}[/tex]
(ii) Reflection over the x-axis
[tex]g(x) = -f(x)[/tex]
Let prove both transformations in [tex]h(x)[/tex]:
Step 1 - Vertical stretch ([tex]k = 4[/tex])
[tex]h'(x) = 4\cdot x^{2}[/tex]
Step 2 - Reflection over the x-axis
[tex]k(x) = -4\cdot x^{2}[/tex]
Hence, correct answer is A.