Answer :
To determine what function is the correct answer we use the choices listed above to substitute x and obtain the value of y and see if it corresponds to the given y value. We do as follows:
y = x^8
y = (1)^8
y = 1 ----> NOT THE ANSWER
y = 8^x
y = 8^(1)
y = 8---> NOT THE ANSWER
y = (x + 8)^2
y = (1+8)^2
y = 81
y = 8x
y = 8(1)
y = 8 ---> NOT THE ANSWER
y = x^8
y = (1)^8
y = 1 ----> NOT THE ANSWER
y = 8^x
y = 8^(1)
y = 8---> NOT THE ANSWER
y = (x + 8)^2
y = (1+8)^2
y = 81
y = 8x
y = 8(1)
y = 8 ---> NOT THE ANSWER
Answer:
[tex]y=(x+8)^{2}[/tex]
Step-by-step explanation:
we have that
The ordered pairs [tex](1, 81), (2, 100), (3, 121), (4, 144)[/tex], and [tex](5, 169)[/tex] represent a function
The rule that that represent this function is equal to
[tex]y=(x+8)^{2}[/tex]
Verify
For [tex]x=1[/tex] -----> Find the value of y in the equation
[tex]y=(1+8)^{2}=81[/tex] -----> is correct
For [tex]x=2[/tex] -----> Find the value of y in the equation
[tex]y=(2+8)^{2}=100[/tex] -----> is correct
For [tex]x=3[/tex] -----> Find the value of y in the equation
[tex]y=(3+8)^{2}=121[/tex] -----> is correct
For [tex]x=4[/tex] -----> Find the value of y in the equation
[tex]y=(4+8)^{2}=144[/tex] -----> is correct
For [tex]x=5[/tex] -----> Find the value of y in the equation
[tex]y=(5+8)^{2}=169[/tex] -----> is correct