The distance of the fourth leg is approximately 7.145 kilometers and the angle is approximately 58.879°.
Determinación de la magnitud y el ángulo de un vector a partir de una suma de vectores
El vector [tex]D[/tex] es la suma de los tres vectores [tex]A[/tex], [tex]B[/tex] y [tex]C[/tex], cuya operación se ve a continuación:
[tex]\vec D = -\vec A - \vec B - \vec C[/tex] (1)
[tex]\vec D = -(6.4\cdot \cos 40^{\circ}, 6.4\cdot \sin 40^{\circ}) - (-5.10\cdot \cos 35^{\circ}, 5.10\cdot \sin 25^{\circ}) - (-4.80\cdot \cos 23^{\circ}, -4.80\cdot \sin 23^{\circ})[/tex]
[tex]\vec D = (3.693, -6.117)[/tex]
The magnitude is determined by Pythagorean theorem:
[tex]D = \sqrt{3.693^{2}+(-6.117)^{2}}[/tex]
[tex]D \approx 7.145\,km[/tex]
The direction is found by this inverse trigonometric relationship:
[tex]\theta_{D} = \tan^{-1} \frac{6.117\,km}{3.693\,km}[/tex]
[tex]\theta_{D} \approx 58.879^{\circ}[/tex]
The distance of the fourth leg is approximately 7.145 kilometers and the angle is approximately 58.879°.
To learn more on vectors, we kindly invite to check this verified question: https://brainly.com/question/13188123