Answer :

Given:

A figure of a circle and inscribed quadrilateral JKLM.

[tex]m\angle M=47^\circ,\angle K=(7x+21)^\circ[/tex]

To find:

The value of x.

Solution:

The inscribed quadrilateral JKLM in the circle I is a cyclic quadrilateral and the opposite angles of a cyclic quadrilateral are supplementary angles.

Angle M and angle K are opposite angles of a cyclic quadrilateral, it means they are supplementary angles and their sum is 180 degrees.

[tex]m\angle M+m\angle K=180^\circ[/tex]

[tex]47^\circ+(7x+21)^\circ=180^\circ[/tex]

[tex](7x+68)^\circ=180^\circ[/tex]

[tex](7x+68)=180[/tex]

Isolate the variable x.

[tex]7x=180-68[/tex]

[tex]7x=112[/tex]

[tex]x=\dfrac{112}{7}[/tex]

[tex]x=16[/tex]

Therefore, the value of x is 16.

Other Questions