Answer :

Answer:

[tex]\frac{2*x - 2}{2*x} - \frac{3*x + 2}{4*x} = \frac{x - 6}{4*x}[/tex]

Step-by-step explanation:

We have the expression:

[tex]\frac{2*x - 2}{2*x} - \frac{3*x + 2}{4*x}[/tex]

The first thing we want to do, is to have the same denominator in both equations, then we need to multiply the first term by (2/2), so the denominator becomes 4*x

We will get:

[tex](\frac{2}{2} )\frac{2*x - 2}{2*x} - \frac{3*x + 2}{4*x} = \frac{4*x - 4}{4*x} - \frac{3*x + 2}{4*x}[/tex]

Now we can directly add the terms to get:

[tex]\frac{4*x - 4}{4*x} - \frac{3*x + 2}{4*x} = \frac{4*x - 4 - 3*x - 2}{4*x} = \frac{x - 6}{4*x}[/tex]

We can't simplify this anymore

Other Questions