Answer :
Answer:
CI 99% = ( 0,022 ; 0,126 )
Step-by-step explanation:
First sample
n₁ = 500
x₁ = 48
p₁ = x₁ / n₁ = 48 / 500 p₁ = 0,096 p₁ = 9,6 %
Second sample
n₂ = 400
x₂ = 68
p₂ = x₂ / n₂ = 68 / 400 p₂ = 0,17 p₂ = 17 %
CI = 99 % significance level α = 1 % α = 0,01
z(c) for α = 0,01 is from z- table z(c) = 2,325
CI = ( p₂ - p₁ ) ± z(c) *√ p*q* ( 1/n₁ + 1 / n₂ )
Where
p₂ - p₁ = 0,17 - 0,096 = 0,074
p = ( x₁ + x₂ ) / n₁ + n₂
p = ( 48 + 68 ) /( 500 + 400)
p = 116/ 900 p = 0,1288 and q = 1 - p q = 0,8712
z(c) *√ p*q* ( 1/n₁ + 1 / n₂ ) = 2,325 * √ 0,1288*0,8712 ( 1 / 500 + 1/ 400)
2,235 * 0,02247
z(c) *√ p*q* ( 1/n₁ + 1 / n₂ ) = 0,052
Then
CI 99 % = 0,074 ± 0,052
CI 99% = ( 0,022 ; 0,126 )
The difference between the groups shows that the proportion in the second group was bigger than in the first group.
The CI in the context of the problem is CI 99% = ( 0,022 ; 0,126 )
What will be the Solution of This problem?
Given first sample is
n₁ = 500
x₁ = 48
[tex]P_{1} =\dfrac{X_{1} }{n_{1} }[/tex] [tex]P_{1} =\dfrac{48}{500}[/tex]
p₁ = 0,096 p₁ = 9,6 %
Given second sample
n₂ = 400
x₂ = 68
[tex]P_{2} =\dfrac{X_{2} }{n_{2} }[/tex] [tex]P_{2} =\dfrac{68}{400}[/tex]
p₂ = 0,17 p₂ = 17 %
Since given CI = 99 % so significance level α = 1 % α = 0,01
From Z-Table z(c) for α= 0,01 is = 2,325
CI = [tex](P_{2} -P_{1}[/tex] ± [tex]Z(c)\sqrt[2]{p\times q} (\dfrac{1}{n_{1} } +\dfrac{1}{n_{2} } )[/tex]
Where
p₂ - p₁ = 0,17 - 0,096 = 0,074
[tex]P= \dfrac{X_{1} +X_{2} }{n_{1}+n_{2} }[/tex]
[tex]P=\dfrac{48+68}{500+400}[/tex]
[tex]P=\dfrac{116}{900}[/tex]
p = 0,1288 and q = 1 - p q = 0,8712
[tex]Z(c)\sqrt[2]{p\times q} (\dfrac{1}{n_{1} } +\dfrac{1}{n_{2} } )[/tex] [tex]2325\times\sqrt[2]{0.1288\times 0.8712} (\dfrac{1}{500_{} } +\dfrac{1}{400_{} } )[/tex]
[tex]Z(c)\sqrt[2]{p\times q} (\dfrac{1}{n_{1} } +\dfrac{1}{n_{2} } )=0.052[/tex]
Then
CI 99 % = 0,074 ± 0,052
CI 99% = ( 0,022 ; 0,126 )
Hence the difference between the groups shows that the proportion in the second group was bigger than in the first group.
To know more about Chi square follow
https://brainly.com/question/4543358