Answer :
Answer:
(a) [tex]Pr = 0.3024[/tex]
(b) [tex]Pr = 0.6976[/tex]
(c) [tex]Pr = \frac{^9P_{n-1}}{10^{n-1}}[/tex]
Step-by-step explanation:
Given
[tex]Start = \{5,6,7,8\}[/tex] i.e. between 4 and 9
[tex]n(Start) =4[/tex]
[tex]Digits = 5[/tex]
Solving (a): Probability that each of the 5 digit are different
Since there is no restriction;
The total possible selection is as follows:
[tex]First\ digit = 4[/tex] (i.e. any of the 4 start digits)
[tex]Second\ digit = 10\\[/tex] (i.e. any of the 10 digits 0 - 9)
[tex]Third\ digit = 10[/tex] (i.e. any of the 10 digits 0 - 9)
[tex]Fourth\ digit = 10[/tex] (i.e. any of the 10 digits 0 - 9)
[tex]Fifth\ digit = 10[/tex] (i.e. any of the 10 digits 0 - 9)
So, the total is:
[tex]Total = 4 * 10 * 10 * 10 * 10[/tex]
[tex]Total = 40000[/tex]
For selection that all digits are different, the selection is:
[tex]First\ digit = 4[/tex] (i.e. any of the 4 start digits)
[tex]Second\ digit = 9[/tex] (i.e. any of the remaining 9)
[tex]Third\ digit = 8[/tex] (i.e. any of the remaining 8)
[tex]Fourth\ digit = 7[/tex] (i.e. any of the remaining 7)
[tex]Fifth\ digit = 6[/tex] (i.e. any of the remaining 6)
So:
[tex]Selection =4 * 9 * 8 * 7 * 6[/tex]
[tex]Selection =12096[/tex]
So, the probability is:
[tex]Pr = \frac{Selection}{Total}[/tex]
[tex]Pr = \frac{12096}{40000}[/tex]
[tex]Pr = 0.3024[/tex]
Solving (b): At least 1 repeated digit
The probability calculated in (a) is the all digits are different i.e. P(None)
So, using laws of complement
We have:
[tex]P(At\ least\ 1) = 1 - P(None)[/tex]
So, we have:
[tex]Pr= 1 - 0.3024[/tex]
[tex]Pr = 0.6976[/tex]
Solving (c): An expression to model the probability.
Using (a) as a point of reference, we have;
[tex]Pr = \frac{Selection}{Total}[/tex]
Where
[tex]Selection =4 * 9 * 8 * 7 * 6[/tex] ---- for selection of 5 i.e. n = 5
[tex]Total = 4 * 10 * 10 * 10 * 10[/tex]
[tex]Selection =4 * 9 * 8 * 7 * 6[/tex]
This can be rewritten as:
[tex]Selection = 4 * ^9P_4[/tex]
4 can be expressed as: 5 - 1
So, we have:
[tex]Selection = (5-1) *^9P_{5-1}[/tex]
Substitute n for 5
[tex]Selection = (n-1) *^9P_{n-1}[/tex]
[tex]Selection = (n-1)^9P_{n-1}[/tex]
[tex]Total = 4 * 10 * 10 * 10 * 10[/tex]
This can be rewritten as:
[tex]Total = 4 * 10^4[/tex]
[tex]Total = (5-1) * 10^{5-1}[/tex]
[tex]Total = (n-1) * 10^{n-1}[/tex]
[tex]Total = (n-1) 10^{n-1}[/tex]
So, the expression is:
[tex]Pr = \frac{(n-1)^9P_{n-1}}{(n-1)10^{n-1}}[/tex]
[tex]Pr = \frac{^9P_{n-1}}{10^{n-1}}[/tex]
Where n represents the digit number