meerkat18
Answered

What are the sine, cosine, and tangent of Θ = 3 pi over 4 radians?

sin Θ = square root 2 over 2; cos Θ = negative square root 2 over 2; tan Θ = -1

sin Θ = negative square root 2 over 2; cos Θ = square root 2 over 2; tan Θ = 1

sin Θ = square root 2 over 2; cos Θ = negative square root 2 over 2; tan Θ = 1

sin Θ = negative square root 2 over 2; cos Θ = square root 2 over 2; tan Θ = -1

Answer :

nobrains
[tex] \frac{3 \pi }{4} * \frac{180degrees}{ \pi } = 135 degrees[/tex].

Drawing a reference triangle, this is 45 degrees in the second quadrant.
See attached.

Sine theta will be opposite/hypotenuse
[tex]= \frac{1}{ \sqrt{2} } * \frac{ \sqrt{2} }{ \sqrt{2} } = \frac{ \sqrt{2} }{2} [/tex]

Cosine will be adjacent/hypotenuse
[tex] \frac{-1}{ \sqrt{2} } * \frac{ \sqrt{2} }{ \sqrt{2} } = \frac{- \sqrt{2} }{2} [/tex]

Tangent will be opposite/adjacent
[tex] \frac{1}{-1}=-1 [/tex]
${teks-lihat-gambar} nobrains
lazbell1

ALL I KNOW IS THAT IT'S NOT......    

C

Other Questions