Answer :
[tex] \frac{3 \pi }{4} * \frac{180degrees}{ \pi } = 135 degrees[/tex].
Drawing a reference triangle, this is 45 degrees in the second quadrant.
See attached.
Sine theta will be opposite/hypotenuse
[tex]= \frac{1}{ \sqrt{2} } * \frac{ \sqrt{2} }{ \sqrt{2} } = \frac{ \sqrt{2} }{2} [/tex]
Cosine will be adjacent/hypotenuse
[tex] \frac{-1}{ \sqrt{2} } * \frac{ \sqrt{2} }{ \sqrt{2} } = \frac{- \sqrt{2} }{2} [/tex]
Tangent will be opposite/adjacent
[tex] \frac{1}{-1}=-1 [/tex]
Drawing a reference triangle, this is 45 degrees in the second quadrant.
See attached.
Sine theta will be opposite/hypotenuse
[tex]= \frac{1}{ \sqrt{2} } * \frac{ \sqrt{2} }{ \sqrt{2} } = \frac{ \sqrt{2} }{2} [/tex]
Cosine will be adjacent/hypotenuse
[tex] \frac{-1}{ \sqrt{2} } * \frac{ \sqrt{2} }{ \sqrt{2} } = \frac{- \sqrt{2} }{2} [/tex]
Tangent will be opposite/adjacent
[tex] \frac{1}{-1}=-1 [/tex]
