Answer :

calculista

Answer:

The answer is the option A

[tex]\frac{1}{2}(\sqrt{[(y2)^{2}+(x2)^{2}]*[(y1)^{2}+(x1)^{2}]})[/tex]

Step-by-step explanation:

see the attached figure with letters to better understand the problem

we know that

The area of the triangle is equal to

[tex]A=\frac{1}{2}bh[/tex]

where

b is the base

h is the height

In this problem

[tex]b=AB, h=AC[/tex]

the formula to calculate the distance between two points is equal to

[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]

Find the distance AB

[tex]A(0,0), B(x2,y2)[/tex]

substitute

[tex]dAB=\sqrt{(y2-0)^{2}+(x2-0)^{2}}[/tex]

[tex]dAB=\sqrt{(y2)^{2}+(x2)^{2}}[/tex]

Find the distance AC

[tex]A(0,0), C(x1,y1)[/tex]

substitute

[tex]dAC=\sqrt{(y1-0)^{2}+(x1-0)^{2}}[/tex]

[tex]dAC=\sqrt{(y1)^{2}+(x1)^{2}}[/tex]

Find the area of the triangle

we have

[tex]b=\sqrt{(y2)^{2}+(x2)^{2}}, h=\sqrt{(y1)^{2}+(x1)^{2}}[/tex]

substitute  

[tex]A=\frac{1}{2}(\sqrt{(y2)^{2}+(x2)^{2}})(\sqrt{(y1)^{2}+(x1)^{2}})[/tex]

[tex]A=\frac{1}{2}(\sqrt{[(y2)^{2}+(x2)^{2}]*[(y1)^{2}+(x1)^{2}]})[/tex]

${teks-lihat-gambar} calculista
skierchy

Answer:

A for plato users

Step-by-step explanation:

Other Questions