Answer :
1) Upward motion
y1 = Vo*t - g(t^2) / 2
2) Downward motion
y2 = D - [Vo*t + g(t^2) / 2]
3) Collision => y1 = y2
y1 = Vo*t - g(t^2) / 2
y2 = D - [Vo*t + g(t^2) / 2]
Vo*t - g(t^2) / 2 = D - [Vo*t + g(t^2) / 2]
Vo*t - g(t^2) / 2 = D - Vo*t - g(t^2)/2
D = 2Vo*t => t = D / (2Vo)
Substitute the value of t in the equation of y1 (it is the same if you do it in the equation of y2)
y1 = Vo*t - g(t^2) / 2 = Vo [D/(2Vo) ] - g [D / (2Vo)]^2 / 2
y1 = D/2 - g(D^2) / 8(Vo ^2)
Answer: y1 = D/2 - g(D^2) / 8(Vo ^2)
y1 = Vo*t - g(t^2) / 2
2) Downward motion
y2 = D - [Vo*t + g(t^2) / 2]
3) Collision => y1 = y2
y1 = Vo*t - g(t^2) / 2
y2 = D - [Vo*t + g(t^2) / 2]
Vo*t - g(t^2) / 2 = D - [Vo*t + g(t^2) / 2]
Vo*t - g(t^2) / 2 = D - Vo*t - g(t^2)/2
D = 2Vo*t => t = D / (2Vo)
Substitute the value of t in the equation of y1 (it is the same if you do it in the equation of y2)
y1 = Vo*t - g(t^2) / 2 = Vo [D/(2Vo) ] - g [D / (2Vo)]^2 / 2
y1 = D/2 - g(D^2) / 8(Vo ^2)
Answer: y1 = D/2 - g(D^2) / 8(Vo ^2)