Answer :

MrRoyal

Statements can be proved by contrapositive, contradiction or by induction.

  • 2.21 and 2.23 are proved by contrapositive
  • 2.22 is proved by induction

2.21: If [tex]n^3[/tex] is even, then n is even (By contrapositive)

The contrapositive of the above statement is that:

If n is odd, then  [tex]n^3[/tex] is odd

Represent the value of n as:

[tex]n = 2k + 1[/tex], where [tex]k \ge 0[/tex]

Take the cube of both sides

[tex]n^3 = (2k + 1)^3[/tex]

Expand

[tex]n^3 = 8k^3 + 6k^2 + 6k + 1[/tex]

Group

[tex]n^3 =[ 8k^3 + 6k^2 + 6k] + 1[/tex]

Factor out 2

[tex]n^3 =2[4k^3 + 3k^2 + 3k] + 1[/tex]

Assume w is an integer; where:

[tex]w =4k^3 + 3k^2 + 3k[/tex]

So, we have:

[tex]n^3 =2w + 1[/tex]

The constant term (i.e. 1) means that [tex]n^3[/tex] is odd.

Hence, the statement has been proved by contrapositive.

i.e. If n is odd, then  [tex]n^3[/tex] is odd

2.22  [tex]3n + 4[/tex] is even, if and only if n is even

We have: [tex]3n + 4[/tex]

Assume that: [tex]n = 2k + 2[/tex] for [tex]k \ge 0[/tex]

So, we have:

[tex]3n + 4 = 3(2k + 2) + 4[/tex]

Open bracket

[tex]3n + 4 = 6k + 6 + 4[/tex]

[tex]3n + 4 = 6k + 10[/tex]

Factorize

[tex]3n + 4 = 2(3k + 5)[/tex]

The factor of 2 means that [tex]3n + 4[/tex] is even.

Hence, [tex]3n + 4[/tex] is even, if and only if n is even

2.22: [tex]s \ne -1[/tex] and [tex]t \ne -1[/tex], then [tex]s + t + st \ne -1[/tex]

To do this, we prove by contrapositive.

The contrapositive of the above statement is:

If [tex]s = -1[/tex] and [tex]t=-1[/tex], then [tex]s + t + st = -1[/tex]

We have:

[tex]s + t + st = -1[/tex]

Substitute the values of s and t in: [tex]s + t + st = -1[/tex]

[tex]-1 -1 -1 \times -1 = -1[/tex]

[tex]-1 -1 + 1 = -1[/tex]

[tex]-1 = -1[/tex]

Hence, by contrapositive:

If [tex]s = -1[/tex] and [tex]t=-1[/tex], then [tex]s + t + st = -1[/tex]

Read more about proofs  at:

https://brainly.com/question/19643658

Other Questions