Answered

Consider a line passing through the points A(–28, –13) and B(28, 15). Type the y-value for the point C(–24, y) to ensure that point C also lies on line AB.

Answer :

discipulus

Step-by-step explanation:

[tex] \frac{y_2-y_1}{x_2-x_1}=\frac{15-(-13)}{28-(-28)}\\=\frac{28}{2(28)}\\\therefore\ m=\frac{1}{2}\\\frac{y-y_1}{xl-x_1}=m]\\\frac{y+13}{x+28}=\frac{1}{2}\\2y+26=x+28\\2y=x+2\\ y=\frac{1}{2}x+1[/tex]

In order to find y for point C on AB, substitute point C in line equation if AB.

[tex]y=\frac{1}{2}(-24)+1\\\therefore y=-12+1=11\\\therefore C(-24, -11)[/tex]

Other Questions