Answer :
(f/g)(0) is an illustration of composite function.
The value of (f/g)(0) is -3/2
The given parameters are:
[tex]f(x) = x + 3[/tex]
[tex]g(x) = x^2 - 2[/tex]
First, we calculate (f/g)(x)
(f/g)(x) is represented as
[tex](f/g)(x) = \frac{f(x)}{g(x)}[/tex]
Substitute values for f(x) and g(x)
[tex](f/g)(x) = \frac{x + 3}{x^2 -2}[/tex]
Substitute 0 for x
[tex](f/g)(0) = \frac{0 + 3}{0^2 -2}[/tex]
Evaluate the exponents
[tex](f/g)(0) = \frac{0 + 3}{0 -2}[/tex]
Simplify the numerator and the denominator
[tex](f/g)(0) = \frac{3}{-2}[/tex]
Rewrite as:
[tex](f/g)(0) = -\frac{3}{2}[/tex]
Hence, the value of (f/g)(0) is -3/2
Read more about composite functions at:
https://brainly.com/question/10830110