Answer :

MrRoyal

(f/g)(0) is an illustration of composite function.

The value of (f/g)(0) is -3/2

The given parameters are:

[tex]f(x) = x + 3[/tex]

[tex]g(x) = x^2 - 2[/tex]

First, we calculate (f/g)(x)

(f/g)(x) is represented as

[tex](f/g)(x) = \frac{f(x)}{g(x)}[/tex]

Substitute values for f(x) and g(x)

[tex](f/g)(x) = \frac{x + 3}{x^2 -2}[/tex]

Substitute 0 for x

[tex](f/g)(0) = \frac{0 + 3}{0^2 -2}[/tex]

Evaluate the exponents

[tex](f/g)(0) = \frac{0 + 3}{0 -2}[/tex]

Simplify the numerator and the denominator

[tex](f/g)(0) = \frac{3}{-2}[/tex]

Rewrite as:

[tex](f/g)(0) = -\frac{3}{2}[/tex]

Hence, the value of (f/g)(0) is -3/2

Read more about composite functions at:

https://brainly.com/question/10830110