meerkat18
Answered

Which choice is equivalent to the fraction below when x is an appropriate value? Hint: Rationalize the denominator and simplify.

Which choice is equivalent to the fraction below when x is an appropriate value? Hint: Rationalize the denominator and simplify. class=

Answer :

diene
A.
Multiply top and bottom by (3-√(2x)), then divide top and bottom by 3
[tex] \frac{3}{3- \sqrt{6x} } = \frac{3}{3- \sqrt{6x} } \times \frac{3+ \sqrt{6x} }{3+ \sqrt{6x} } \\ = \frac{3(3+ \sqrt{6x})}{3^2-( \sqrt{6x} )^2} = \frac{3(3+ \sqrt{6x})}{9-6x} \\ =\frac{3(3+ \sqrt{6x})}{3(3-2x)}=\frac{3+ \sqrt{6x}}{3-2x}[/tex]

Other Questions