Answer :
Answer:
5,000,000 times larger.
Step-by-step explanation:
We are asked to find [tex]3\times 10^{-5}[/tex] in how many times greater than [tex]6\times 10^{-12}[/tex].
To solve our given problem, we will divide [tex]3\times 10^{-5}[/tex] by [tex]6\times 10^{-12}[/tex] as shown below:
[tex]\frac{3\times 10^{-5}}{6\times 10^{-12}}[/tex]
Using exponent rule [tex]\frac{a^m}{a^n}=a^{m-n}[/tex], we will get:
[tex]\frac{3\times 10^{-5}}{6\times 10^{-12}}=\frac{3}{6}\times 10^{-5-(-12)}[/tex]
[tex]\frac{3\times 10^{-5}}{6\times 10^{-12}}=\frac{1}{2}\times 10^{-5+12}[/tex]
[tex]\frac{3\times 10^{-5}}{6\times 10^{-12}}=0.5\times 10^{7}[/tex]
[tex]\frac{3\times 10^{-5}}{6\times 10^{-12}}=0.5\times 10,000,000[/tex]
[tex]\frac{3\times 10^{-5}}{6\times 10^{-12}}=5,000,000[/tex]
Therefore, [tex]3\times 10^{-5}[/tex] is 5,000,000 times larger than [tex]6\times 10^{-12}[/tex].