Answer :
The triangle is an illustration of right-angled triangles
The other side lengths are (AB) 30.9 and (AC) 29.9
The given parameters are:
[tex]\mathbf{\angle A = 15^o}[/tex]
[tex]\mathbf{BC = 8}[/tex]
From the diagram (see attachment), length AC is calculated using the following tangent ratio
[tex]\mathbf{tan(A) = \frac{BC}{AC}}[/tex]
So, we have:
[tex]\mathbf{tan(15) = \frac{8}{AC}}[/tex]
Make AC the subject
[tex]\mathbf{AC = \frac{8}{tan(15)}}[/tex]
[tex]\mathbf{AC = 29.8564064606}[/tex]
Approximate
[tex]\mathbf{AC = 29.9}[/tex]
Length AB is calculated using the following sine ratio
[tex]\mathbf{sin(A) = \frac{BC}{AB}}[/tex]
So, we have:
[tex]\mathbf{sin(15) = \frac{8}{AB}}[/tex]
Make AB the subject
[tex]\mathbf{AB = \frac{8}{sin(15)}}[/tex]
[tex]\mathbf{AB = 30.9096264413}[/tex]
Approximate
[tex]\mathbf{AB = 30.9}[/tex]
Hence, the other side lengths are (AB) 30.9 and (AC) 29.9
Read more about trigonometry ratios at:
https://brainly.com/question/19597802
