Answer :

rembber
[tex] \sqrt[n]{x^m}=x^\frac{m}{n} [/tex]
and [tex] \frac{1}{x^m}=x^{-m} [/tex] so

[tex] \frac{8}{ \sqrt[7]{x^{15}} }= \frac{8}{x^ \frac{15}{7} }=8x^{(\frac{-15}{7})} [/tex]

Answer:

[tex]8 \cdot x^{-\frac{15}{7}}[/tex]

Step-by-step explanation:

Using exponent rule:

  • [tex]\sqrt[n]{a^m} = a^{\frac{m}{n}}[/tex]
  • [tex]a^{-m}=\frac{1}{a^m}[/tex]

Given the radical expression:

[tex]\frac{8}{\sqrt[7]{x^{15}} }[/tex]

Apply the exponent rule:

[tex]\frac{8}{x^{\frac{15}{7}} }[/tex]

Again apply the exponent rule:

[tex]8 \cdot x^{-\frac{15}{7}}[/tex]

Therefore, the radical expression [tex]\frac{8}{\sqrt[7]{x^{15}} }[/tex] in exponential form is, [tex]8 \cdot x^{-\frac{15}{7}}[/tex]

Other Questions