Answer :
rembber
[tex] \sqrt[n]{x^m}=x^\frac{m}{n} [/tex]
and [tex] \frac{1}{x^m}=x^{-m} [/tex] so
[tex] \frac{8}{ \sqrt[7]{x^{15}} }= \frac{8}{x^ \frac{15}{7} }=8x^{(\frac{-15}{7})} [/tex]
[tex] \sqrt[n]{x^m}=x^\frac{m}{n} [/tex]
and [tex] \frac{1}{x^m}=x^{-m} [/tex] so
[tex] \frac{8}{ \sqrt[7]{x^{15}} }= \frac{8}{x^ \frac{15}{7} }=8x^{(\frac{-15}{7})} [/tex]
Answer:
[tex]8 \cdot x^{-\frac{15}{7}}[/tex]
Step-by-step explanation:
Using exponent rule:
- [tex]\sqrt[n]{a^m} = a^{\frac{m}{n}}[/tex]
- [tex]a^{-m}=\frac{1}{a^m}[/tex]
Given the radical expression:
[tex]\frac{8}{\sqrt[7]{x^{15}} }[/tex]
Apply the exponent rule:
[tex]\frac{8}{x^{\frac{15}{7}} }[/tex]
Again apply the exponent rule:
[tex]8 \cdot x^{-\frac{15}{7}}[/tex]
Therefore, the radical expression [tex]\frac{8}{\sqrt[7]{x^{15}} }[/tex] in exponential form is, [tex]8 \cdot x^{-\frac{15}{7}}[/tex]