Answer :

Answer:

AC = 3 in.

Step-by-step explanation:

It is given in the figure attached, in Δ ABC

∠ A = 90°

m∠B = 45°

AB = 3 in.

We have to find all sides of the triangle given

we will apply sine in Δ ABC to find the measure of AC

sinB = [tex]\frac{AB}{BC}[/tex]

[tex]sin45=\frac{3}{BC}[/tex]

[tex]\frac{1}{\sqrt{2}}=\frac{3}{BC}[/tex]

Now by cross multiplication

BC = 3√2 in.

Now by Pythagoras theorem

BC²= AC² + AB²

(3√2)² = AC² + 3²

18 - 9 = AC²

AC = √9 = 3

Now we come to the options you have mentioned

AC = 3 in. is the correct answer.

${teks-lihat-gambar} eudora

Answer:

AC=3 in, m∠C=45° and BC=3√2 in.

Step-by-step explanation:

Given information: ABC is a right angled triangle AB=3 in. , m∠A=90° , and m∠B=45° .

According to the angle sum property the sum of interior angles of a triangle is 180°.

[tex]\angle A+\angle B+\angle C=180^{\circ}[/tex]

[tex]90^{\circ}+45^{\circ}+\angle C=180^{\circ}[/tex]

[tex]135^{\circ}+\angle C=180^{\circ}[/tex]

[tex]\angle C=180^{\circ}-135^{\circ}[/tex]

[tex]\angle C=45^{\circ}[/tex]

The measure of angle C is 45°.

In a right angled triangle,

[tex]\tan\theta=\frac{opposite}{adjacent}[/tex]

In triangle ABC,

[tex]\tan B=\frac{AC}{AB}[/tex]

[tex]\tan (45^{\circ})=\frac{AC}{3}[/tex]

[tex]1=\frac{AC}{3}[/tex]

Multiply both sides by 3.

[tex]3=AC[/tex]

The measure of AC is 3 in.

According to Pythagoras theorem,

[tex]hypotenuse^2=base^2+perpendicular^2[/tex]

[tex]BC^2=3^2+3^2[/tex]

[tex]BC^2=9+9[/tex]

[tex]BC^2=18[/tex]

Taking square root on both sides.

[tex]BC=\sqrt{18}[/tex]

[tex]BC=3\sqrt{2}[/tex]

Therefore, the missing measurements are AC=3 in, m∠C=45° and BC=3√2 in.

${teks-lihat-gambar} erinna

Other Questions