Computing the matrix product in the last condition gives a system of linear equations in the components of [tex]\vec c[/tex],
[tex]\begin{cases} c_1 + b_3c_2 - b_2c_3 = 3 \\ -b_3c_1 + c_2 + c_3 = 1 \\ b_2c_1 - c_2 + c_3 = -1 \end{cases}[/tex]
and is easily solvable to get
[tex]c_1 = \dfrac{6-2b_3}{2+{b_2}^2+{b_3}^2}, c_2 = \dfrac{2+3b_3}{2+{b_2}^2+{b_3}^2}, c_3 = \dfrac{9-3b_3}{2+{b_2}^2+{b_3}^2}[/tex]
or, using the condition [tex]\vec a\cdot\vec b = 3 + b_2 - b_3 = 0[/tex],
[tex]c_1 = -\dfrac{2b_2}{11 + 6b_2 + 2{b_2}^2}, c_2 = \dfrac{11+3b_2}{11+6b_2+2{b_2}^2}, c_3 = -\dfrac{3b_2}{11+6b_2+2{b_2}^2}[/tex]
• (1) is false, since
[tex]\vec a \cdot \vec c = \dfrac{11}{2 + {b_2}^2 + {b_3}^2} \neq 0[/tex]
because [tex]{b_2}^2+{b_3}^2\ge0 \implies 0<\vec a\cdot\vec c\le\frac{11}2[/tex].
• (2) is true.
[tex]\vec b\cdot \vec c = \dfrac{(3 + b_2 - b_3) (2 + 3b_3)}{2 + {b_2}^2 + {b_3}^2} = \dfrac{(\vec a\cdot\vec b)(2+3b_3)}{2+{b_2}^2+{b_3}^2} = 0[/tex]
• (3) is false. The magnitude of [tex]\vec b[/tex] could be smaller than √10.
Since [tex]\vec a\cdot\vec b=0[/tex], we have
[tex]\|\vec b\| = \sqrt{1 + {b_2}^2 + (3+b_2)^2} = \sqrt{10 + 6b_2 + 2{b_2}^2}[/tex]
and
[tex]2{b_2}^2 + 6b_2 = 2\left({b_2}^2 + 3b_2 + \dfrac94\right) - \dfrac{18}4 = 2\left(b_2 + \dfrac32\right)^2 - \dfrac92 \ge - \dfrac92[/tex]
which is to say, [tex]\|\vec b\| \ge \sqrt{10-\frac92} = \sqrt{\frac{11}2}[/tex].
• (4) is true.
We have
[tex]\|\vec c\| = \dfrac{\sqrt{11} \sqrt{11 - 6b_3 + 2{b_3}^2}}{2 + {b_2}^2 + {b_3}^2}[/tex]
In terms of [tex]b_2[/tex] alone,
[tex]\|\vec c\| = \dfrac{\sqrt{11}\sqrt{11 + 6b_2 + 2{b_2}^2}}{11+6b_2+2{b_2}^2} = \dfrac{\sqrt{11}}{\sqrt{11+6b_2+2{b_2}^2}}[/tex]
Now,
[tex]11 + 6b_2 + 2{b_2}^2 = 2\left(b_2+\dfrac32\right)^2 + \dfrac{13}2 \ge \dfrac{13}2[/tex]
which means
[tex]\|\vec c\| \le \dfrac{\sqrt{11}}{\sqrt{11 + \frac{13}2}} \le \sqrt{11}[/tex]