How do I solve this problem? Hint:To find the satellite's acceleration, speed and period, use the following equations:a = G M / r2v = √(a r)T = 2πr/vBe sure to use the distance between the satellite and the earth for the radius! a=gravitational acceleration [m/s2]G=gravitational constant [always 6.67 x 10-11 m3/kg s2]M=larger mass [kg]r=distance between masses or orbital radius [m]v=orbital velocity or speed [m/s]T=period / time required to complete one revolution [s]The period can be converted to hours by using the conversion factor: 1 hour = 3600s.

How do I solve this problem? Hint:To find the satellite's acceleration, speed and period, use the following equations:a = G M / r2v = √(a r)T = 2πr/vBe sure to class=

Answer :

Answer with explanation: Provided the satellitle orbiting the earth ( Planet ), we have to fill the missing information in the blanks:

Acceleration of the satellite:

[tex]\begin{gathered} a=-g \\ g=\frac{M}{r^2}G \\ G=6.674\cdot10^{-11}\cdot m^3\cdot kg^{-1}\cdot s^{-2} \\ r=(5.81\times10^7)m \\ M=(5.97\times10^{24})\operatorname{kg} \\ \therefore\Rightarrow \\ g=\frac{(5.97\times10^{24})\operatorname{kg}}{(5.81\times10^7m)^2}\cdot(6.674\cdot10^{-11}\cdot m^3\cdot kg^{-1}\cdot s^{-2}) \\ g=-6.8578\cdot10^6ms^{-2} \\ a=-g \\ \therefore\Rightarrow \\ a=-(-6.8578\cdot10^6ms^{-2}_{})= \\ a=6.8578\cdot10^6ms^{-2} \end{gathered}[/tex]

Value of G-Constant:

[tex]G=6.674\cdot10^{-11}\cdot m^3\cdot kg^{-1}\cdot s^{-2}[/tex]

Mass of Earth:

[tex]M=(5.97\times10^{24})\operatorname{kg}[/tex]

Radius or distance between the earth and the satellite:

[tex]r=(5.81\times10^7)m[/tex]

The velocity of the satellite:

[tex]\begin{gathered} a=\frac{v^2}{r} \\ \therefore\Rightarrow \\ v=\sqrt[]{ra} \\ v=\sqrt[]{(5.81\times10^7)m\cdot(6.8578\cdot10^6ms^{-2}}) \\ v=7.9520\times10^7 \end{gathered}[/tex]

Time period T:

[tex]\begin{gathered} T=\frac{2\pi r}{v} \\ \pi=3.141 \\ r(5.81\times10^7)m \\ v=7.9520\times10^7\therefore\Rightarrow \\ T=\frac{2\cdot\pi\cdot(5.81\times10^7)m}{(7.9520\times10^7)}=4.5898s \\ \therefore\Rightarrow \\ T=4.5898s\frac{1hr}{3600s}=0.0012749hr \\ T=0.0012749hr \end{gathered}[/tex]

Following is the screenshot of the answer, as per your own request.

${teks-lihat-gambar} JarettI580913
${teks-lihat-gambar} JarettI580913

Other Questions