Answer :
The set of equations is,
[tex]\begin{gathered} \frac{1}{2}x-\frac{1}{3}y=5 \\ x=\frac{2}{3}y+10 \end{gathered}[/tex]Substituting the values of x from second equation in the first one, we have,
[tex]\begin{gathered} \frac{1}{2}(\frac{2}{3}y+10)-\frac{y}{3}=5 \\ \frac{2y}{6}+5-\frac{y}{3}=5 \\ \frac{2y}{6}-\frac{y}{3}=0 \end{gathered}[/tex]Further,
[tex]\begin{gathered} \frac{6y-6y}{18}=0 \\ \end{gathered}[/tex]Hence the solution is y = 0 , substituting this value for x, we get, x = 10.