Answer :
[tex]\begin{gathered} a)\text{ Find }E(\hat{p}) \\ E(\hat{p})=0.63,\text{ from the 63\% of all dentist who use nitrous oxide} \\ b\mathrm{})\text{ Find }\sigma_{\hat{p}} \\ \sigma_{\hat{p}}=\sqrt[]{\frac{\hat{p}(1-\hat{p})}{n}} \\ \sigma_{\hat{p}}=\sqrt[]{\frac{0.63(1-0.63)}{500}} \\ \sigma_{\hat{p}}=\sqrt[]{\frac{(0.63)(0.37)}{500}} \\ \sigma_{\hat{p}}=0.2331 \\ c)\text{ The Central Limit Theorem says that as the sample size grows large,} \\ \text{the sampling distribution of }\hat{p}\text{ will become approximately normal} \end{gathered}[/tex][tex]\begin{gathered} d) \\ \text{Convert to a z-value} \\ z=\frac{0.46-0.63}{\sigma_{\hat{p}}} \\ z=\frac{-0.17}{0.2331} \\ z=-0.7293 \\ \text{Find }p(z>-0.7293) \\ P(z>-0.7293)=P\mleft(Z<-0.7293\mright)+0.5 \\ P(z>-0.7293)=0.233+0.5 \\ P(z>-0.7293)=0.733 \\ P(\hat{p}>0.46)=0.733 \end{gathered}[/tex]