Answer :
The given angle is: 270°
If we observe in the unit circle, it is located at the coordinates (0,-1):
Now, the coordinates in the unit circle are given by:
[tex](\cos\theta,\sin\theta)[/tex]This means:
[tex]\begin{gathered} \cos270=0 \\ \sin270=-1 \end{gathered}[/tex]By knowing this, we can find the rest of the trigonometric values as follows:
[tex]\begin{gathered} \tan270=\frac{\sin270}{\cos270}=\frac{-1}{0}=undefined \\ \\ cot270=\frac{\cos270}{\sin270}=\frac{0}{-1}=0 \\ \\ sec270=\frac{1}{\cos270}=\frac{1}{0}=undefined \\ \\ csc270=\frac{1}{\sin270}=\frac{1}{-1}=-1 \end{gathered}[/tex]The answer are:
tan(270)=undefined
cot(270)=0
sec(270)=undefined
csc(270)=-1
