Answer :

The x and y-coordinates of the midpoint of a segment are given by the following formulas:

[tex]xm=\frac{xA+xB}{2}[/tex][tex]ym=\frac{yA+yB}{2}[/tex]

Where (xm, ym) is the idpoint, (xA, yA) are point A coordinates and (xB, yB) are point B coordinates.

From the first equation, we can solve for xB:

[tex]\begin{gathered} xm=\frac{xA+xB}{2} \\ 2xm=xA+xB \\ 2xm-xA=xB \\ xB=2xm-xA \end{gathered}[/tex]

Similarly for yB:

[tex]yB=2ym-yA[/tex]

By replacing -5 for xA and -3 for xm in the first equation, we get:

[tex]\begin{gathered} xB=2\times(-3)-(-5) \\ xB=-6+5 \\ xB=-1 \end{gathered}[/tex]

Replacing -4 for yA and 2 for ym in the second equation, we get:

[tex]\begin{gathered} yB=2\times(2)-(-4) \\ yB=4+4 \\ yB=8 \end{gathered}[/tex]

Then, yB equals 8.

Then, the coordinates of point B are (-1, 8)

Other Questions