IFactorial expressionsEvaluate.(4!6!)/(2!5!)Simplify your answer as much as possible.I need help with this math problem.

The factorial of an integer is given by the product of all the integers that are equal or smaller than it. For example, the factorial of 4 is:
[tex]4!=1\cdot2\cdot3\cdot4[/tex]We must find the value of the following expression with factorials:
[tex]\frac{4!\cdot6!}{2!\cdot5!}[/tex]The first thing that we can do is expand the four factorials in the expression:
[tex]\frac{4!\cdot6!}{2!\cdot5!}=\frac{1\cdot2\cdot3\cdot4\cdot1\cdot2\cdot3\cdot4\cdot5\cdot6}{1\cdot2\cdot1\cdot2\cdot3\cdot4\cdot5}[/tex]All the numbers on both the numerator and the denominator are multiplying. This means that if a number appears in the numerator and in the denominator it can be simplified. For example 1 appears twice in the numerator and twice in the denominator so it can be simplified:
[tex]\frac{1\cdot2\cdot3\cdot4\cdot1\cdot2\cdot3\cdot4\cdot5\cdot6}{1\cdot2\cdot1\cdot2\cdot3\cdot4\cdot5}=\frac{1\cdot1}{1\cdot1}\cdot\frac{2\cdot3\cdot4\cdot2\cdot3\cdot4\cdot5\cdot6}{2\cdot2\cdot3\cdot4\cdot5}=\frac{2\cdot3\cdot4\cdot2\cdot3\cdot4\cdot5\cdot6}{2\cdot2\cdot3\cdot4\cdot5}[/tex]2 appears twice in both the numerator and the denominator so it can be simplified:
[tex]\frac{2\cdot3\cdot4\cdot2\cdot3\cdot4\cdot5\cdot6}{2\cdot2\cdot3\cdot4\cdot5}=\frac{3\cdot4\cdot3\cdot4\cdot5\cdot6}{3\cdot4\cdot5}[/tex]We have a 3, a 4 and a 5 in the denominator so we can simplify them with a 3, a 4 and a 5 of the numerator:
[tex]\frac{3\cdot4\cdot3\cdot4\cdot5\cdot6}{3\cdot4\cdot5}=\frac{3\cdot4\cdot5}{3\cdot4\cdot5}\cdot\frac{3\cdot4\cdot6}{1}=3\cdot4\cdot6=72[/tex]AnswerThen the answer is 72.