Answer :

Given the system of equations:

x + y = 13 (Equation 1)

1/2x + y = 10 (Equation 2)

To find the solution to the system, you can follow the steps below:

Step 1: Isolate y in Equation 1.

[tex]\begin{gathered} x+y=13 \\ y=13-x \end{gathered}[/tex]

Step 2: Substitute y by (13 - x) in Equation 2.

[tex]\begin{gathered} \frac{1}{2}x+y=10 \\ \frac{1}{2}x+13-x=10 \end{gathered}[/tex]

Step 3: Isolate x.

To do it, first, add -13 to each of the equality.

[tex]\begin{gathered} \frac{1}{2}x+13-x-13=10-13 \\ \frac{1}{2}x-x=-3 \end{gathered}[/tex]

Put all x together using the same denominator:

[tex]\begin{gathered} \frac{1x-2x}{2}=-3 \\ -\frac{x}{2}=-3 \end{gathered}[/tex]

Multiply both sides by (-2)

[tex]\begin{gathered} -\frac{x}{2}=-3 \\ -\frac{x}{2}\cdot(-2)=-3\cdot(-2) \\ \frac{2}{2}x=6 \\ x=6 \end{gathered}[/tex]

Step 4: Find y using Equation 1.

Since you found x, you can substitute it in Equation 1 and find y.

[tex]\begin{gathered} x+y=13 \\ 6+y=13 \end{gathered}[/tex]

Subtract 6 from each side to isolate y.

[tex]\begin{gathered} 6+y-6=13-6 \\ y=7 \end{gathered}[/tex]

Answer:

x = 6; y = 7

Alternative B. (6, 7)

Other Questions