Answer :
ANSWER
Current (l) = 7.81 amps (rounded to 2 decimal places)
EXPLANATION
Declaration of Variables
Let l represent the current in a wire,
v represent the voltage, and
r represent the resistance
Desired Outcome
The current (l)
Equation formation
[tex]\begin{gathered} l\propto\frac{v}{r} \\ l\text{ = }\frac{kv}{r} \end{gathered}[/tex]where k is the constant of proportionality.
Determine the value of k given l = 27.5, v = 110, and r = 4.
[tex]\begin{gathered} l\text{ = }\frac{kv}{r} \\ 27.5\text{ = }\frac{k\times110}{4} \\ 110k\text{ = 27.5}\times4 \\ 110k\text{ = 110} \\ k\text{ = }\frac{110}{110} \\ k\text{ = 1} \end{gathered}[/tex]Find the current (l) given v = 125, and r = 16.
[tex]\begin{gathered} l\text{ = }\frac{kv}{r} \\ l\text{ = }\frac{1\times125}{16} \\ l\text{ = 7.8125 amps} \end{gathered}[/tex]Hence, the current (l) when the voltage is 125 volts and the resistance is 16 ohms is 7.81 amps (rounded to 2 decimal places).