I need help on the first one it’s confusing for me and it’s geometry

$ 6'282,312.524
Explanation
Step 1
find the length of the street:
we have a rigth triangle, then
Let
[tex]\begin{gathered} \text{side}1=\text{ 6 miles} \\ \text{side}2=\text{ 9 miles} \\ \text{hypotenuse = new str}et=\text{ h} \end{gathered}[/tex]so, we need to find the valur for hypotenuse, to do that, we can use the Pythagorean theorem, it states that the sum of the squares on the legs of a right triangle is equal to the square on the hypotenuse (the side opposite the right angle)
so
[tex]\begin{gathered} (Side1)^2+(Side2)^2=h^2 \\ \text{replace} \\ (6m)^2+(9m)^2=h^2 \\ 36m^2+81m^2=h^2 \\ 117m^2=h^2 \\ \sqrt[]{117m^2}=\sqrt{h^2} \\ \text{hence} \\ h=10.81\text{ mi} \end{gathered}[/tex]Step 2
find the total cost,
a) convert the length from miles to ft,so
[tex]\begin{gathered} 10.81\text{ mi(}\frac{5280\text{ ft}}{1\text{ mi}}\text{)}=5711.9322 \\ 5711.9322\text{ft} \end{gathered}[/tex]b) finally, to know the total cost multiply the length by the rate,so
[tex]\begin{gathered} \text{total cost= ralte}\cdot length\text{ ( ft)} \\ \text{total cost= }110\frac{\text{ \$}}{ft}\cdot5711.9322\text{ ft} \\ \text{total cost= \$ }6^{\prime}282,321.542 \end{gathered}[/tex]therefore, the estimated cost is
$ 6'282,312.524
I hope this helps you