Given P(A)=0.8P(A)=0.8, P(B)=0.51P(B)=0.51 and P(A\cap B)=0.468P(A∩B)=0.468, find the value of P(B|A)P(B∣A), rounding to the nearest thousandth, if necessary.

Given P(A)=0.8P(A)=0.8, P(B)=0.51P(B)=0.51 and P(A\cap B)=0.468P(A∩B)=0.468, find the value of P(B|A)P(B∣A), rounding to the nearest thousandth, if necessary. class=

Answer :

[tex]\begin{gathered} P(A)=0.8 \\ P(B)=0.51 \\ P(AnB)=0.468 \\ P(B|A^{})=\text{?} \end{gathered}[/tex][tex]P(B\text{|A})=\frac{P(BnA)}{P(A)}[/tex][tex]P(B|A)=\frac{0.468}{0.8}=0.585[/tex]

Other Questions