Answer
75%
Explanation
Given table:
What to find:
The minimum grade needed on the final exam to earn an overall grade of 83% in the class.
Step-by-step solution:
For the attendance: (100% of 10%)
[tex]\frac{100}{100}\times10\%=10\%[/tex]
For the test: (80% of 30%)
[tex]\frac{80}{100}\times30\%=24\%[/tex]
For the Homework: (95% of 20%)
[tex]\frac{95}{100}\times20\%=19\%[/tex]
For the final exam: Let the 5 be x, so x% of 40% will be:
[tex]\frac{x}{100}\times40\%=0.4x\%[/tex]
Now, to find the minimum grade needed on the final exam to earn an overall grade of 83% in the class it will be:
[tex]\begin{gathered} 10\%+24\operatorname{\%}+19\operatorname{\%}+0.4x\operatorname{\%}=83\operatorname{\%} \\ \\ 53\operatorname{\%}+0.4x\operatorname{\%}=83\operatorname{\%} \\ \\ 0.4x\operatorname{\%}=83\operatorname{\%}-53\operatorname{\%} \\ \\ 0.4x\operatorname{\%}=30\operatorname{\%} \\ \\ x\operatorname{\%}=\frac{30\operatorname{\%}}{0.4} \\ \\ x=75\operatorname{\%} \end{gathered}[/tex]
Thus, the correct answer is 75%.