Answer :

Given the function:

f(x) = 9x + 7

Let's find the inverse of the function.

To find the inverse of the function interchange variables and solve for y.

Take the following steps:

• Step 1.

Rewrite f(x) as y.

y = 9x + 7

• Step 2.

Interchange the variables:

x = 9y + 7

• Step 3.

Let's solve for y.

Subtract 7 from both sides

x - 7 = 9y + 7 - 7

x - 7 = 9y

• Step 4.

Divide all terms by 9:

[tex]\begin{gathered} \frac{x}{9}-\frac{7}{9}=\frac{9y}{9} \\ \\ \frac{x}{9}-\frac{7}{9}=y \\ \\ y=\frac{x}{9}-\frac{7}{9} \end{gathered}[/tex]

Therefore, the inverse of the given function is:

[tex]f^{-1}(x)=\frac{1}{9}x-\frac{7}{9}[/tex]

ANSWER: D

[tex]f^{-1}(x)=\frac{1}{9}x-\frac{7}{9}[/tex]

Other Questions